

Document Title

2M x 16 bit Pseudo SRAM (EMP216MAAW Series) Specification

Revision History

Revision No.	History	Draft Date	Remark
0.0	Initial Draft	Oct. 24, 2005	Preliminary

Emerging Memory & Logic Solutions Inc.

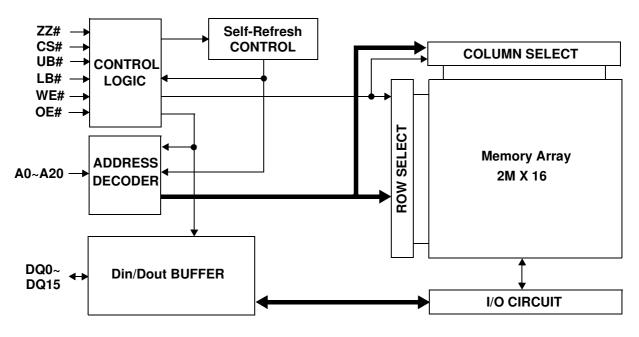
4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea Zip Code : 690-717 Tel : +82-64-740-1700 Fax : +82-64-740-1749~1750 / Homepage : www.emlsi.com

The attached datasheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

2Mb x16 Pseudo Static RAM Specification

GENERAL DESCRIPTION

The EMP216MAAW series is 33,554,432 bits of Pseudo SRAM which uses DRAM type memory cells, but this device has refresh-free operation and extreme low power consumption technology. Furthermore the interface is compatible to a low power Asynchronous type SRAM. The EMP216MAAW is organized as 2,097,152 Words x 16 bit.


FEATURES

- Organization :2M x16
- Power Supply Voltage : 2.7 ~ 3.3V
- Separated I/O power(VccQ) & Core power(Vcc)
- Three state outputs
- Byte read/write control by UB# / LB#
- Support Page Read/Write operation with 16 words
- Support Auto-TCSR for power saving

PRODUCT FAMILY

Part Number			Speed	Power Di	ssipation		
	Operating Temp.	Power Supply	(t _{RC})	Standby (I _{SB1} , Max.)			
EMP216MAAW-70E	-25°C to 85°C	2.7V to 3.3V	70ns	120uA	25mA		

FUNCTION BLOCK DIAGRAM

Preliminary

EMP216MAAW Series 2Mx16 Pseudo Static RAM

2Mb x16 Pseudo Static RAM

GENERAL WAFER SPECIFICATIONS

- Process Technology : 0.125um CMOS Deep trench process
- 3 Metal layers including local inter-connection
- Wafer thickness : 725 +/- 25um
- Wafer Diameter : 8-inch

PAD DESCRIPTION

Name	Function	Name	Function
CS#	Chip select inputs	LB#	Lower byte (DQ _{0~7})
OE#	Output enable input	UB#	Upper byte (DQ _{8~15})
WE#	Write enable input	VCC	Power supply
ZZ#	Low Power Control	VCCQ	I/O Power supply
DQ ₀₋₁₅	Data In-out	VSS(Q)	Ground
A ₀₋₂₀	Address inputs	NC	No connection

ABSOLUTE MAXIMUM RATINGS¹⁾

Parameter	Symbol	Ratings	Unit
Voltage on Any Pin Relative to Vss	V _{IN} , V _{OUT}	-0.2 to V _{CCQ} +0.3V	V
Voltage on Vcc supply relative to Vss	V_{CC}, V_{CCQ}	-0.2 ²⁾ to 3.6V	V
Power Dissipation	P _D	1.0	W
Storage Temperature	T _{STG}	-65 to 150	°C
Operating Temperature	T _A	-25 to 85	°C

1. Stresses greater than those listed above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Undershoot at power-off : -1.0V in case of pulse width < 20ns

FUNCTIONAL DESCRIPTION

CS#	ZZ#	OE#	WE#	LB#	UB#	DQ _{0~7}	DQ _{8~15}	Mode	Power
Н	Н	Х	Х	Х	Х	High-Z	High-Z	Deselected	Stand by
Х	L	Х	Х	Х	Х	High-Z	High-Z	Deselected	Deep Power Down
Х	Н	Х	Х	Н	Н	High-Z	High-Z	Deselected	Stand by
L	Н	Н	Н	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	Х	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Data Out	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Data Out	Upper Byte Read	Active
L	Н	L	Н	L	L	Data Out	Data Out	Word Read	Active
L	Н	Х	L	L	Н	Data In	High-Z	Lower Byte Write	Active
L	Н	Х	L	Н	L	High-Z	Data In	Upper Byte Write	Active
L	Н	Х	L	L	L	Data In	Data In	Word Write	Active

Note: X means don't care. (Must be low or high state)

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.7	3.0	3.3	V
Supply voltage	V _{CCQ}	2.7	3.0	3.3	V
Ground	V_{SS}, V_{SSQ}	0	0	0	V
Input high voltage	V _{IH}	0.8 * V _{CCQ}	-	$V_{CCQ} + 0.2^{2)}$	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.2 * V _{CCQ}	V

1. T_A = -25 to 85°C, otherwise specified 2. Overshoot: Vcc +1.0 V in case of pulse width \leq 20ns

3. Undershoot: -1.0 V in case of pulse width \leq 20ns

4. Overshoot and undershoot are sampled, not 100% tested.

$\textbf{CAPACITANCE}^{1)} \quad (f = 1 MHz, T_A = 25^{o}C)$

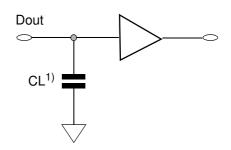
Item	Symbol	Test Condition	Min	Мах	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Ouput capacitance	C _{IO}	V _{IO} =0V	-	8	pF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	ILI	$V_{\text{IN}} \!\!= \! V_{\text{SS}}$ to V_{CCQ} , $V_{\text{CC}} \!\!= \! V_{\text{CCmax}}$	-1	-	1	uA
Output leakage current	I _{LO}	$ \begin{array}{l} CS\#=V_{IH} \ , \ ZZ\#=V_{IH} \ , \ OE\#=V_{IH} \ or \ WE\#=V_{IL} \ , \\ V_{IO}=V_{SS} \ to \ V_{CCQ} \ , \ V_{CC=}V_{CCmax} \end{array} $	-1	-	1	uA
	I _{CC1}	Cycle time=1µs, 100% duty, I_{IO} =0mA, CS# \leq 0.2V, ZZ#=V _{IH} , V _{IN} \leq 0.2V or V _{IN} \geq V _{CCQ} -0.2V	-	-	5	mA
Average operating current	I _{CC2}	Cycle time = Min, I_{IO} =0mA, 100% duty, CS#=V _{IL} , ZZ#=V _{IH} , V _{IN} =V _{IL} or V _{IH}	-	-	25	mA
Output low voltage	V _{OL}	$I_{OL} = 0.5 \text{mA}, V_{CC} = V_{CCmin}$	-	-	0.2*V _{CCQ}	V
Output high voltage	V _{OH}	$I_{OH} = -0.5 \text{mA}, V_{CC=} V_{CCmin}$	0.8*V _{CCQ}	-	-	V
Standby Current (CMOS)	I _{SB}	CS#,ZZ#≥V _{CCQ} -0.2V, Other inputs = 0 ~ V _{CCQ} (Typ. condition : V _{CC} =3.0V @ 25° C) (Max. condition : V _{CC} =3.3V @ 85° C)	-	-	100	uA

1. Maximum Icc specifications are tested with $V_{CC} = V_{CCmax.}$


AC OPERATING CONDITIONS

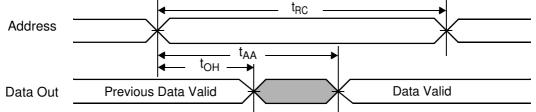
ging Memory & Logic Solutions Inc.

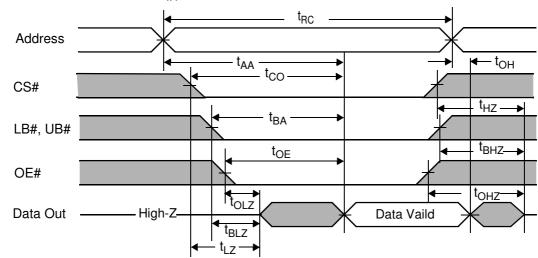
Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level : 0.2V to V_{CCQ} -0.2V Input Rise and Fall Time : 5ns Input and Output reference Voltage : V_{CCQ}/2 Output Load (See right) : CL¹⁾ = 30pF

1. Including scope and Jig capacitance

AC CHARACTERISTICS (V_{cc} = 2.7 to 3.3V, Gnd = 0V, T_A = -25C to $+85^{\circ}C$)

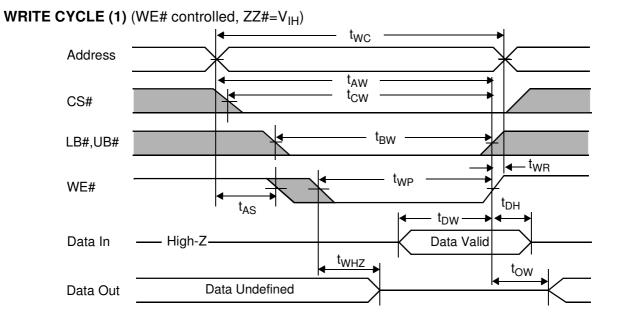

	Devenuetor List	Symbol	Sp	beed	11
	Parameter List	Symbol	Min	Max	Unit
	Read Cycle Time	t _{RC}	70	1k	ns
	Address access time	t _{AA}	-	70	ns
	Chip enable to data output	t _{CO}	-	70	ns
	Output enable to valid output	t _{OE}	-	25	ns
	UB#, LB# enable to data output	t _{BA}	-	70	ns
Read	Chip enable to low-Z output	t _{LZ}	10	-	ns
Read	UB#, LB# enable to low-Z output	t _{BLZ}	10	-	ns
	Output enable to low-Z output	t _{OLZ}	5	-	ns
	Chip disable to high-Z output	t _{HZ}	0	15	ns
	UB#, LB# disable to high-Z output	t _{BHZ}	0	15	ns
	Output disable to high-Z output	t _{OHZ}	0	15	ns
	Output hold from Address change	t _{OH}	5	-	ns
	Write Cycle Time	t _{WC}	70	1k	ns
	Chip enable to end of write	t _{CW}	60	-	ns
	Address setup time	t _{AS}	0	-	ns
	Address valid to end of write	t _{AW}	60	-	ns
	UB#, LB# valid to end of write	t _{BW}	60	-	ns
Write	Write pulse width	t _{WP}	50	-	ns
	Write recovery time	t _{WR}	0	-	ns
	Write to output high-Z	t _{WHZ}	0	15	ns
	Data to write time overlap	t _{DW}	20	-	ns
	Data hold from write time	t _{DH}	0	-	ns
	End write to output low-Z	t _{OW}	5	-	ns



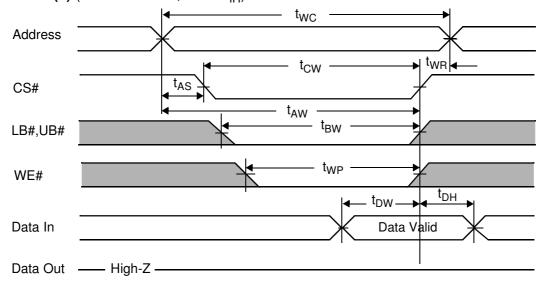
TIMING DIAGRAMS

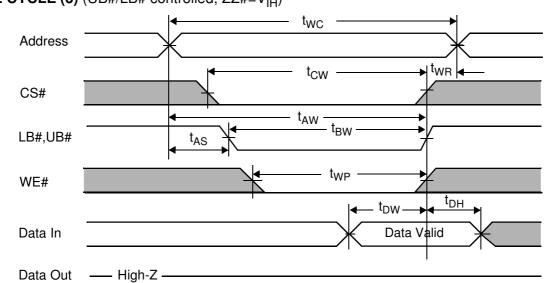
READ CYCLE (1) (Address controlled, $CS\#=OE\#=V_{IL}$, $ZZ\#=WE\#=V_{IH}$, UB# or/and LB#= V_{IL})

READ CYCLE (2) (ZZ#=WE#=VIH)



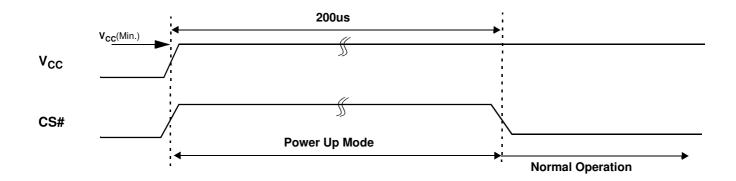
NOTES (READ CYCLE)


- 1. t_{HZ}, t_{BHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. Do not Access device with cycle timing shorter than t_{RC} for continuous periods > 20us.



WRITE CYCLE (2) (CS# controlled, ZZ#=V_{IH})

WRITE CYCLE (3) (UB#/LB# controlled, ZZ#=VIH)


NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low CS#, low WE# and low UB# or LB#. A write begins at the last transition among low CS# and low WE# with asserting UB# or LB# low for single byte operation or simultaneously asserting UB# and LB# low for word operation. A write ends at the earliest transition among high CS# and high WE#. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from CS# going low to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WB} is measured from the end of write to the address change. t_{WB} applied in case a write ends as CS# or WE# going high.
- 5. Do not Access device with cycle timing shorter than t_{WC} for continuous periods > 20us.

TIMING WAVEFORM OF POWER UP

NOTE (POWER UP)

1. After Vcc reaches Vcc(Min.), wait 200us with CS# high. Then you get into the normal operation.